
Fundamentals of Business Analytics”

Chapter 7

Multi Dimensional Data Modeling

Content of this presentation has been

taken from Book

“Fundamentals of Business

Analytics”
RN Prasad and Seema Acharya

Published by Wiley India Pvt. Ltd.Published by Wiley India Pvt. Ltd.

and it will always be the copyright of the

authors of the book and publisher only.

Basis

• You are already familiar with the concepts relating to basics of RDBMS,

OLTP, and OLAP, role of ERP in the enterprise as well as “enterprise

production environment” for IT deployment. In the previous lectures, you

have been explained the concepts - Types of Digital Data, Introduction to

OLTP and OLAP, Business Intelligence Basics, and Data Integration . With

this background, now its time to move ahead to think about “how data is

modelled”.

• Just like a circuit diagram is to an electrical engineer, • Just like a circuit diagram is to an electrical engineer,

• an assembly diagram is to a mechanical Engineer, and

• a blueprint of a building is to a civil engineer

• So is the data models/data diagrams for a data architect.

• But is “data modelling” only the responsibility of a data architect?

The answer is Business Intelligence (BI) application developer today is

involved in designing, developing, deploying, supporting, and optimizing

storage in the form of data warehouse/data marts.

• To be able to play his/her role efficiently, the BI application developer relies

heavily on data models/data diagrams to understand the schema structure,

the data, the relationships between data, etc.

In this lecture, we will learn

• About basics of data modelling

• How to go about designing a data model

at the conceptual and logical levels?

• Pros and Cons of the popular modelling • Pros and Cons of the popular modelling

techniques such as ER modelling and

dimensional modelling

Case Study – “TenToTen Retail Stores”
• A new range of cosmetic products has been introduced by a leading brand, which TenToTen wants

to sell through its various outlets.

• In this regard TenToTen wants to study the market and the consumer’s choice of cosmetic

products.

• As a promotional strategy the group also wants to offer attractive introductory offers like

discounts, buy one get one free, etc.

• To have a sound knowledge of the cosmetics market, TenToTen Stores has to carry out a detailed

study of the buying pattern of consumers’ by geography, the sales of cosmetic products by

preferred brand, etc. and then decide on a strategy to promote the product. To take right decisions

on various aspects of business expansion, product promotion, preferences, etc., TenToTen Stores

has decided to go in for an intelligent decision support system.

• TenToTen Retail Store taken the help of “AllSolutions” (leading consulting firms of the world) .

• After studying the requirements of TenToTen Stores, AllSolutions decided on build a data

warehouse application. To construct a data model that would meet the business requirements put

forth by TenToTen Stores. AllSolutions identified the following concerns that need to be

addressed:

What are the entities involved in this business process and how are they related to each other?

What tables associated with those entities must be included in the data warehouse?

What columns have to be included into each table?

What are the primary keys for the tables that have been identified?

What are the relations that the tables have with each other and which is the column on which the relationship has to be

made?

What should be the column definitions for the columns that have been identified?

What are the other constraints to be added into the tables?

Thus, AllSolutions has zeroed down on the requirements of TenToTen Stores. Now, step for building data model can be

proceeded.

Recap of some basics of Data Modelling-

 Entity

 Attribute

 Cardinality of Relationship

Data Model
 A data model is a diagrammatic representation of the data and the relationship

between its different entities. It assists in identifying how the entities are

Types of Data Model

 Conceptual Data Model

 Logical Data Model

 Physical Data Model

between its different entities. It assists in identifying how the entities are

related through a visual representation of their relationships and thus helps

reduce possible errors in the database design. It helps in building a robust

database/data warehouse.

Conceptual Data Model
The conceptual data model is designed by identifying the various entities and the highest-

level relationships between them as per the given requirements.

Let us look at some features of a conceptual data mpdel-

• It identifies the most important entities.

• It identifies relationships between different entities.

• It does not support the specification of attributes.

• It does not support the specification of the primary key.

Going back to the requirement specification of TenToTen Stores, let us design the conceptual

data model (Next Slide).data model (Next Slide).

In this case, the entities can be identified as

• Category (to store the category details of products).

• SubCategory (to store the details of sub-categories that belong to different categories)

• Product (to store product details).

• PromotionOffer (to store various promotion offers introduced by the company to sell products)

• ProductOffer (to map the promotion offer to a product).

• Date (to keep track of the sale date and also to analyze sales in different time periods)

• Territory (to store various territories where the stores are located).

• MarketType (to store details of various market setups, viz. “Hypermarkets &“Traditional

Supermarket”, “Dollar Store”, and “Super Warehouse”).

• OperatorType (to store the details of types of operator, viz. company-operated or franchise)

• Outlet (to store the details of various stores distributed over various locations).

• Sales (to store all the daily transactions made at various stores)

Logical Data Model
The logical data model is used to describe data in as much detail as possible. While describing

the data, no consideration is given to the physical implementation aspect.

Let us look at some features of a logical data model:

• It identifies all entities and the relationships among them.

• It identifies all the attributes for each entity.

• It specifies the primary key for each entity.

• It specifies the foreign keys (keys identifying the relationship between different entities).

• Normalization of entities is performed at this stage.

Normalization:
1NF

2NF

3NF and soon

Outcome of Logical Data Model

Outcome of Logical Data Model

Outcome of Logical Data Model

Outcome of Logical Data Model

Outcome of Logical Data Model

To Conclude about Conceptual Data Model

• We have identified the various entities from the requirements specification.

• We have identified the various attributes for each entity.

• We have also identified the relationship that the entities share with each

other (Primary key-Foreign Key).

Compare between Logical and Conceptual Data Model

• All attributes for each entity are specified in a logical data model, whereas

no attributes fre specified in a conceptual data model.no attributes fre specified in a conceptual data model.

• Primary keys are present in a logical data model, whereas no primary key is

present in 3 conceptual data model.

• In a logical data model, the relationships between entities are specified using

primary and foreign keys, whereas in a conceptual data model, the

relationships are simply without specifying attributes. It means in a

conceptual data model, we only know that two related; we don’t know which

attributes are used for establishing the relationship between these two

entities.

Physical Model

• Specification of all tables and columns.

• Foreign keys are used to identify relationships between tables.

• While logical data model is about normalization, physical data model may

support de-normalization based on user requirements.

• Physical considerations (implementation concerns) may cause the physical

data model to be quite different from the logical data model.

• Physical data model will be different for different RDBMS. For example,

data type for a column may be different for MySQL, DB2, Oracle, SQL

Server, etc.

The steps for designing a physical data model are as follows:

• Convert entities into tables/relation.

• Convert relationships into foreign keys.

• Convert attributes into columns/fields.

Outcome of Physical Data Model

Outcome of Physical Data Model

Outcome of Physical Data Model

Few points of difference between Logical and Physical Data Model

• The entity names of the logical data model are table names in the physical

data model.

• The attributes of the logical data model are column names in the physical

data model.

• In the physical data model, the data type for each column is specified.

However, data types differ depending on the actual database (MySQL,DB2,

SQL Server 2008, Oracle etc.) being used. In a logical data model, only the

attributes are identified without going into the details about the data type

specifications.

Data Modeling Techniques – Normalization (Entity relationship) Modeling

An industry service provider, “InfoMechanists”, has several Business Units

(BUs) such as

- Financial Services(FS)

- Insurance Services (IS)

- Life Science Services (LSS)

- Communication Services (CS)

- Testing Services (TS) etc.

Each BU has

- a Head as a manager

- Many employees reporting to him. Each employee has a current residential- Many employees reporting to him. Each employee has a current residential

address.

Data Modeling Techniques – Normalization (Entity relationship) Modeling

• There are cases where a couple (both husband and wife) are employed

either in the same BU or a different one.

• In such a case, they (the couple) have same address.

• An employee can be on a project, but at any given point in time, he or she

can be working on a single project only.

• Each project belongs to a client. There could be chances where a client has

awarded more than one project to the company (either to the same BU or

different BUs).

• A project can also be split into modules which can be distributed to BUs

according to their field of specifications.according to their field of specifications.

• For example, in an insurance project, the development and maintenance

work is with Insurance Services (IS) and the testing task is with Testing

Services (TS). Each BU usually works on several projects at a time.

Data Modeling Techniques – Normalization (Entity relationship) Modeling

Given the specifications mentioned in the last slide, let us see how we will

proceed to design an ER model.

• Enumerated below is a list of steps to help you arrive at the ER diagram:

1. Identify all the entities.

2. Identify the relationships among the entities along with cardinality and

participation type(total/partial participation).

3. Identify the key attribute or attributes.

4. Identify all other relevant attributes.

5. Plot the ER diagram with all attributes including key attribute(s).

6. The ER diagram is then reviewed with the business users.6. The ER diagram is then reviewed with the business users.

E R Model for Infomechanists

Data Modeling Techniques – Normalization (Entity relationship) Modeling

Pros and Cons

Pros -

• The ER diagram is easy to understand and is represented in a language that

the business users can understand.

• It can also be easily understood by a non-technical domain expert.

• It is intuitive and helps in the implementation on the chosen database

platform.

• It helps in understanding the system at a higher level.

Cons –Cons –

•The physical designs derived using ER model may have some amount of

redundancy.

•There is scope for misinterpretations because of the limited information

available diagram.

Data Modeling Techniques – Dimensional Modeling :

Need of Dimensional Modeling

Picture this situation –

Consider you have just reached the Bangalore International Airport.

• You are an Indian national due to fly to London, Heathrow International

Airport. You have collected your boarding pass.

• You have two bags that you would like checked in. The person at the counter

asks for your boarding pass, weighs the bags, pastes the label with details

about your flight number, your name, your travel date, source airport code,

and destination airport code, etc.

• He then pastes a similar label at the back of your boarding pass. This done,• He then pastes a similar label at the back of your boarding pass. This done,

you proceed to the Immigration counter, passport, and boarding pass in hand.

The seal with the current date on your passport.

• Your next stop is the security counter. The security personnel scrutinize your

boarding pass, passport, etc. And you find yourself in the queue to board the

airfact.

• Again quick, careful rounds of verification by the aircraft crew before you find

yourself ensconced in your seat.

Data Modeling Techniques – Dimensional Modeling :

Need of Dimensional Modeling

Picture this situation –

You must be wondering what has all this got to do with multidimensional

modelling.

Well, we are trying to understand multidimensional perspectives of the same

data. The data here is our “boarding pass”.

Your boarding pass is looked at by different personnel for different reasons:

• The person at the check-in counter needs your boarding pass to book your

check-in.

• The immigration personnel looked at your boarding pass to ascertain the• The immigration personnel looked at your boarding pass to ascertain the

source and of your itinerary.

• The security personnel scrutinized your boarding pass for security reasons to

verify an eligible traveller.

• The aircraft crew looked at your boarding pass to onboard you and guide you

to your seat.

This is nothing- but multidimensional perspectives of the same data.

To put it simply, “Multiple Perspectives”.

To help with this multidimensional view of the data, we rely on dimensional

modeling.

Data Modeling Techniques – Dimensional Modeling :

Need of Dimensional Modeling

Consider another Scenario-
An electronic gadget distributor company “ElectronicsForAll” is based out of Delhi, India. The company sells its

products in north, north-west, and western regions of India. They have sales units at Mumbai, Pune,

Ahmedabad, Delhi, and Punjab. The President of the company wants the latest sales information to measure the

sales performance and to take corrective actions if required. He has requested this information from his

business analysts.

Sales Report of “ElectronicsForAll” –
Representation 1 : The number of units sold = 113

Representation 2:
January February March April

14 41 33 25

Products January February March April
Representation 3:

Representation 4:

Products January February March April

Digital Camera 6 17

Mobile Phones 6 16 6 8

Pen Drives 8 25 21

Products January February March April

Mumbai Digital Camera 3 10

Mobile Phones 3 16 6

Pen Drives 4 16 6

Pune Digital Camera 3 7

Mobile Phones 3 8

Pen Drives 4 9 15

Data Modeling Techniques – Dimensional Modeling- Definition :

• This method of analyzing a performance measure (in this case the number of units sold) by looking at it

through various perspectives. Or in other words, the contextualized representation of a business

performance measure, is known as dimensional modeling.

• Dimensional modeling is a logical design technique for structuring data so that it is intuitive to business

users and delivers fast query performance.

• Dimensional modeling is the first step towards building a dimensional database, i.e. a data warehouse.

• It allows the database to become more understandable and simpler. In fact, the dimensional database can

be viewed as a cube having three or more dimensional/perspectives for analyzing the given data.

• Dimensional modeling divides the database into two parts: (a) Measurement and (b) Context.

Measurements are captured by the various business processes and other source systems.

• These measurements are usually numeric values called facts.

• Facts are enclosed by various contexts that are true at the moment the facts are recorded. These contexts

are intuitively divided into independent logical clumps called dimensions. Dimensions describe the “who,

what, when, where, why, and how™ context of the measurements.what, when, where, why, and how™ context of the measurements.

To better understand the fact (measurement)—dimension (context) link, let us take the example of booking an

airlines ticket. In this case, the facts and dimensions are as given below:

Facts — Number of tickets booked, amount paid, etc.

Dimensions — Customer details, airlines, time of booking, time of travel, origin city, destination city, mode

of payment, etc.

Benefits of Dimensional Modeling:

1. Comprehensibility:

• Data presented is more subjective as compared to objective nature in a relational model.

• Data is arranged in a coherent category or dimensions to enable better comprehension.

2. Improved query performance:

3. Trended for data analysis scenarios.

Data Modeling Techniques – Dimensional Modeling- Fact Table:

Fact Table: A fact table consists of various measurements. It stores the measures of business processes and

points to the lowest detail level of each dimension table. The measures are factual or quantitative in

representation and are generally numeric in nature. They represent the how much or how many aspects of a

question. For example, price, product sales, product inventory, etc.

Types of Fact:

Additive facts: These are the facts that can be summed up/aggregated across all dimensions in a fact table. For

example, discrete numerical measures of activity — quantity sold, dollars sold, etc.

Consider a scenario where a retail store “Northwind Traders” wants to analyze the revenue generated. The

revenue generated can be by the employee who is selling the products; or it can be in terms of any combination

of multiple dimensions. Products, time, region, and employee are the dimensions in this case.

The revenue,which is a fact, can be aggregated along any of the above dimensions to give the total revenue

along that dimension. Such scenarios where the fact can be aggregated along all the dimensions make the fact a

fully additive or just an additive fact. Here revenue is the additive fact.fully additive or just an additive fact. Here revenue is the additive fact.

This figure depicts the “SalesFact” fact table along

with its corresponding dimension tables.

This fact table has one measure., “SalesAmount”,

and three dimension keys, “DateID”, “ProductID”,

and “StoreID”.

The purpose of the “SalesFact” table is to record the

sales amount for each product in each store on a

daily basis. In this table, “SalesAmount” is an

additive fact because we can sum up this fact along

any of the three dimensions present in the fact

table i.e. “DimDate”, “DimStore”, and “DimProduct”.

For example – the sum of “SalesAmount” for all 7

days in a week represents the total sales amount for

that week.

Data Modeling Techniques – Dimensional Modeling- Semi-Additive Facts:

Semi Additive facts: These are the facts that can be summed up for some dimensions in the fact table, but not

all. For example, account balances, inventory level, distinct counts etc.

Consider a scenario where the “Northwind Traders” warehouse manager needs to find the total number of

products in the inventory. One inherent characteristic of any inventory is that there will be incoming products to

the inventory from the manufacturing plants and outgoing products from the inventory to the distribution

centres or retail outlets.

So if the total products in the inventory need to be found out, say, at the end of a month, it cannot be a simple

sum of the products in the inventory of individual days of that month. Actually, it is a combination of addition of

incoming products and subtraction of outgoing ones. This means the inventory level cannot be aggregated

along the “time” dimension.

But if a company has warehouses in multiple regions and would like to find the total products in inventory

across those warehouses, a meaningful number can be arrived at by aggregating inventory levels across those

warehouses. This simply means inventory levels can be aggregated along the “region” dimension. Suchwarehouses. This simply means inventory levels can be aggregated along the “region” dimension. Such

scenarios where a fact can be aggregated along some dimensions but not along all dimensions give rise to

semi-additive facts. In this case, the number of products in inventory or the inventory level is the semi-

additive fact.

Let us discuss another example of semi-additive facts.

Figure depicts the “AccountsFact” fact table along with its

corresponding dimension tables. The “AccountsFact” fact table has

two measures :“CurrentBalance” and “ProfitMargin”. It has two

dimension keys: “DatelD” and “AccountID”. “CurrentBalance” is a semi-

additive fact. It makes sense to add up current balances for all

accounts to get the information on “what's the total current balance

for all accounts in the bank?” However, it does not make sense to add

up current balances through time. It does not make sense to add up all

current balances through time. It does not make sense to add up all

current balance for a given account for a given account for each day of

the month. Similarly, “ProfitMargin” is another non-additive fact, as it

does not make sense to add profit margins at the account level or at

the day level.

Data Modeling Techniques – Dimensional Modeling- Non-Additive Facts:

Non Additive facts: These are the facts that cannot be summed up for some dimensions present in the fact

table. For example, measurement of room temperature, percentages, ratios, factless, facts, etc. Non additive

facts cannot be added meaningfully across any dimensions. In other words, non-additive facts are facts where

SUM operator cannot be used to produce any meaningful results. The following illustration will help you

understand why room temperature is a non-additive fact.

Date Temperature

5th May (7AM) 27

5th May (12 AM) 33

5th May (5 PM) 10

Sum 70 (Non-Meaningful result)

Average 23.3 (Meaningful result)

Examples of non-additive facts are:Examples of non-additive facts are:

Textual facts: Adding textual facts does not result in any number. However, counting textual facts may result in a sensible

number.

Per-unit prices: Adding unit prices does not produce any meaningful number. For example: the unit sales price or unit cost is

strictly non-addictive. But these prices can be multiplied with the number products sold and can be depicted as total sales

amount or total product cost in the fact table.

Percentages and ratios: A ratio, such as gross margin, is non-additive. Non-additive facts are usually the result of ratio or

other calculations, such as percentages.

Measures of intensity: Measures of intensity such as the room temperature are non-additive across all dimensions.

Summing the room temperature across different times of the day produces a totally non-meaningful number.

Averages: Facts based on averages are non-additive. For example, average sales price is non-additive. Adding all the average

unit prices produces a meaningless number.

Factless facts (event-based fact tables): Event fact tables are tables that record events. For example, event fact tables are

used to record events such as Webpage clicks and employee or student attendance. In an attendance recording scenario,

attendance can be recorded in terms of “yes” or “no” OR with pusedo facts like “1” or “0”. In such scenarios, we can count

the values but adding them will give invalid values. Factless facts are generally used to model the many-to-many relationships

or to track events that did or did not happen.

Data Modeling Techniques – Dimensional Modeling- Non-Additive Facts -

Example:

The following figure is an example of a “factless fact table” -“EventFact”. This

factless fact table has four dimension keys: “EventID”, “SpeakerID”,

“ParticipantID”, and “DateID”. It does nor have any measures or facts. This table

can be queried to get details on the events that are the most popular. It can

further be used to track events that did not happen. We can also use this table to

elicit information about events that were the least popular or that were not

attended.

An Example of Multidimensional Modeling

Alex is excited. He will be travelling to the USA for business-related work. He has carefully planned his itinerary.

Before embarking on the journey, he wants to check the weather in various US cities. He has searched the

Internet to get the required information for the coming week. He has a table of data before him which looks like

as shown below:
City Name DateDetails MinTemp MaxTemp

Los Angels 22-05-2011 86 105

San Frasisco 22-05-2011 78 107

Phoenix 22-05-2011 88 98

Los Angels 23-05-2011 82 106

San Francisco 23-05-2011 76 104

Phoenix 23-05-2011 86 96

In the above table, we have two dimensions, say, the “Geography” dimension and the “Time” dimension. “NameofCity” andIn the above table, we have two dimensions, say, the “Geography” dimension and the “Time” dimension. “NameofCity” and

“DateDetails” are attributes of the geography and time dimension respectively. There are also two facts, “MinTemp” and

“MaxTemp”. Using this table, it is possible to find out information about the maximum daily temperatures and the minimum

daily temperatures for any group of cities or group of days. Now let us assume that we wish to view the maximum and

minimum temperatures for states. A city belongs to a state. Let us add an attribute “State” to the “Geography” dimension.

The relationship between the state and the city is as depicted in the following figure:

State

City

A state can have multiple cities. The relationship is one-to-many from the state to

cities. Now assume that we wish to have a look at the minimum and maximum

temperatures by counties. This can be achieved by adding yet another attribute

“County” to the geography dimension. The relationship between the state and

county is as depicted in figure. The relationship is many from the state to counties.

You already know that temperature is a non-additive fact. However, one can look

at the average temp for cities or states or for different time periods or for a

combination of geography and time.

State

County

City

What Are Dimensions/Dimension Tables?

• Dimension tables consist of dimension attributes which describe the

dimension elements to enhance comprehension.

• Dimension attributes (descriptive) are typically static values containing

discrete numbers which behave as text values.

• Main functionalities :

 Query filtering\constraining

 Query result set labeling

• The dimension attribute must be

Complete: Dimension attributes must not contain missing values.

Verbose: Labels must consist of full words.Verbose: Labels must consist of full words.

Descriptive: The dimension attribute names must be able to convey the

purpose of the dimension element in as few and simple words as possible.

Discrete values: Dimension attributes must contain only one value per row

in dimension table.

Quality assured: Dimension attributes must not contain misspelt values or

impossible values.

Dimension Hierarchies

• A dimension hierarchy is a cascaded series of many-to-one relationships and

consists of different levels. Each level in a hierarchy corresponds to a

dimension attribute. Hierarchies document the relationship between different

levels in a dimension.

• A dimension hierarchy may also be described as a set of parent-child

relationships attributes present within a dimension. These hierarchy attributes,

also known as levels, roll up a child to parent. For example, Customer totals

can roll up to Sub-region totals which can further roll up to Region totals. A

better example would be — daily sales could roll up to weekly sales, which

further roll up to month to quarter to yearly sales. Let us understand thefurther roll up to month to quarter to yearly sales. Let us understand the

concept of hierarchy through the example. In this example, the Product

hierarchy is like this

Department Category Brand Product Name

Dimension Hierarchies - Example

Similarly, the Date hierarchy is depicted as

Year Quarter Month

Example: 2011 Q1 AprilExample: 2011 Q1 April

For a better idea of dimension hierarchy, let us assume a product store, “ProductsForAll”.

The store has several departments such as “Confectionary”, “Electronics”, “Travel

Goods”, “Home Appliances”, “Dairy Products”, etc. Each department is further divided

into categories. Example “Dairy Products” further classified into “Milk”, “Butter”,

“Cottage Cheese”, “Yogurt”, etc. Each product class offers several brands such as “Amul”,

“Nestle”, etc. And, finally each brand has specific product example, “Amul cheese” has

names such as “Amul Slim Cheese”, “Amul EasySpread”, etc.

Types of Dimensions

Rapidly
Changing
Dimension

Degenerate
Dimension

Junk
(garbage)
Dimension

Dimension
TypeSlowly

Changing
Dimension

Role-playing
Dimension

Dimension Tables – Degenerate Dimension

A degenerate dimension is a data that is dimension in temperament but is present in a fact table. It is a

dimension without any attributes. Usually, a degenerate dimension is a transaction-based number. There can

be more than one degenerate dimension in a fact table.

Degenerate dimensions often cause confusion as they don’t feel or look like normal dimensions. They act as

dimension keys in fact tables; however, they are not joined to corresponding dimensions in other dimension

tables as all their attributes are already present in other dimension tables.

Degenerate dimensions can also be called textual facts, but they are not facts as the primary key for the fact

table is often a combination of dimensional foreign keys and degenerate dimensions. As already stated, a fact

table can have more than one degenerate dimension. For example, an insurance claim line fact table typically

includes both claim and policy numbers as degenerate dimensions. A manufacturer can include degenerate

dimensions for the quote, order, and bill of lading numbers in the shipments fact table.

This figure depicts a PointOfSalesFact table along withThis figure depicts a PointOfSalesFact table along with

other dimension tables. The “PointOfSalesFact” has two

measures: AmountTransacted and QuantitySold. It has

the following dimension keys: DateKey that links the

“PointOfSaleFact” to “DimDate”, ProductID that links the

“PointOfSaleFact” to “DimProduct” and “StoreID” that

links the “PointOfSaleFact” to “DimStore”. Here,

TransactionNo is a degenrate dimension as it is a

dimension key without a corresponding dimension table.

All information/details pertaining to the transaction are

extracted and stored in the “PointOfSaleFact” table

itself;therefore, there is no need to have a separate

dimension table to store the attributes of the

transaction.

Dimension Tables – Slowly Changing Dimension (SCD)
In a dimension model, dimension attributes are not fixed as their values can change slowly over a period of

time. Here comes the role of a slowly changing dimension. A slowly changing dimension is a dimension whose

attribute/attributes for a record (row) change slowly over time, rather than change on a regularly timely basis.

Let us assume a company sells car-related accessories. The company decides to assign a new sales territory,

Los Angeles, to its sales representative, Bret Watson, who earlier operated from Chicago. How can you record

the change without making it appear that Watson earlier held Chicago?

Let us take a look at the original record of Bret Watson: Now the original record has to be changed as Bret

Watson has been assigned “Los Angeles” as his sales territory, effective May 1, 2011. This would be done

through a slowly changing dimension. Given below are the approaches for handling a slowly changing

dimension:

Type-I (Overwriting the History)

In this approach, the existing dimension attribute is overwritten with new data, and hence no history is preserved.

This approach is used when correcting data errors present in a field, such as a word spelled incorrectly.

SalesRepID SalesRepName SalesTerritory

Type-ll (Preserving the History)

A new row is added into the dimension table with a new primary key every time a change occurs to any of the

attributes in the dimension table. Therefore, both the original values as well as the newly updated values are

captured.

Type-III(Preserving One or more Versions of History)

This approach is used when it is compulsory for the data warehouse to track historical and when these changes

will happen only for a finite number of times. Type-III SCDs do not increase the size of the table as compared to

the Type-II SCDs since old information is updated by adding new information.

SalesRepID SalesRepName SalesTerritory

1001 Bret Watson LosAngels

SalesRepID SalesRepName SalesTerritory

1001 Bret Watson Chicago

1006 Bret Watson Los Angeles

SalesRepID SalesRepName OriginalSalesTerritory CurrentSalesTerritory EffectiveFrom

1001 Bret Watson Chicago Los Angeles 01-05-2011

Dimension Tables – Slowly Changing Dimension (SCD)

Type-I (Overwriting the History)

Advantages

•It is the easiest and simplest approach to implement.

•It is very effective in those situations requiring the correction of bad data.

•No change is needed to the structure of the dimension table.

Disadvantages

•All history may be lost in this approach if used inappropriately.

•It is typically not possible to trace history.

•All previously made aggregated tables need to be rebuilt.

Type-ll (Preserving the History)

Advantages

•This approach enables us to accurately keep track of all historical information.

DisadvantagesDisadvantages

•This approach will cause the size of the table to grow fast.

•Storage and performance can become a serious concern, especially in cases where the number of rows for the

table is very high to start with.

•It complicates the ETL process too.

Type-III(Preserving One or more Versions of History)

Advantages

Since only old information is updated with new information, this does not increase the size of the table.

It allows us to keep some part of history.

Disadvantages

Type-III SCDs will not be able to keep all history where an attribute is changed more than once.

For example, if Bret Watson is later assigned “Washington” on December 1, 2012, the Los Angeles information will

be lost.

Dimension Tables – Slowly Changing Dimension (SCD)-

Comparison of the three types of handling of SCD

Dimension Tables – Rapidly Changing Dimension (RCD)

We have seen how to handle very slow changes in the dimension, but what would happen if occur more

frequently?

A dimension is considered to be a fast changing dimension, also call changing dimension, if its one or more

attributes change frequently and also in several rows. For example, consider a customer table having 1,00,000

rows. Assuming that on an average 10 changes occur in a dimension every year, then in one year the number of

rows will increase to 1,00,000 x 10 = 10,00,000.

To identify a fast changing dimension, look for attributes having continuously variable values. Some of the fast

changing dimension attributes have been identified as:

• Age

• Income

• Test score

• Rating

• Credit history score

• Customer account status• Customer account status

• Weight

One method of handling fast changing dimensions is to break off a fast changing dimension into one or more

separate dimensions known as mini-dimensions. The fact table would then have two separate foreign keys — one

for the primary dimension table and another for the fast changing attribute.

Dimension Tables – Junk Garbage Dimension (JGD)
The garbage dimension is a dimension that contains low-cardinality columns/attributes such as indicators, codes, and status flags. The

garbage dimension is also known as junk dimension. The attributes in a garbage dimension are not associated with any hierarchy.

We recommend going for junk/ garbage dimension only if the cardinality of each attribute is relatively low, there are only a few

attributes, and the cross-join of the source tables is too big. The option here will be to create a junk dimension based on the actual

attribute combinations found in the source data for the fact table. This resulting junk dimension will include only combinations that

actually occur, thereby keeping the size significantly smaller.

A junk dimension will combine several low cardinality flags and attributes into a single table rather than modeling them as separate

dimensions. This will help reduce the size of the fact table and make dimensional modeling easier to work with.

Let us look at the following example from the healthcare domain. There are two source tables and a fact table:

In our example, each of the source tables

[CaseType (Case-TypeID, CaseTypeDescription) and TreatmentLevel

(Treatment TypelD, Treatment TypeDescription)]

has only two attributes each. The cardinality of each attribute is also

low.

One way to build the junk dimension will be to perform a cross-join

of the source tables. This will create all possible combinations of

attributes, even if they do not or might never exist in the real world.attributes, even if they do not or might never exist in the real world.

The other way is to build the junk dimension based on the actual

attribute combinations found in the source tables for the fact table.

This will most definitely keep the junk dimension table significantly

smaller since it will include only those combinations that actually

occur. Based on this explanation, we redesign the fact table along

with the junk dimension table as shown below:

SurrogateKeyID CountOfPatients

1 2

2 3

3 5

SurrogateK

eyID

CaseT

ypeID

CaseTypeDescription TreatmentTyp

eID

TreatmentTypeDescr

iption

1 4 Tsrf by a brnch 1 ICU

2 1 Rfrd by anthr hsp 3 Orthopaedic

3 3 Consultaion 4 Ophthalmology

Dimension Tables – Role Playing Dimension (RPD)

A single dimension that is expressed differently in a fact table with the usage of views is called a role-playing

dimension.

Consider an on-line transaction involving the purchase of a laptop. The moment an order is placed, an order date

and a delivery date will be generated. It should be observed that both the dates are the attributes of the same

time dimension. Whenever two separate analyses of the salts performance — one in terms of the order date and

the other in terms of the delivery date — are required, two views of the same time dimension will be created to

perform the analyses. In this scenario, the time dimension is called the role-playing dimension as it is playing the

role of both the order and delivery dates.

Another example of the role-playing dimension is the broker dimension. The broker can play the role of both sell

broker and buy broker in a share trading scenario. Figure below will help you a better understanding of the role-

playing dimension.

“Shipping” is a fact table with three measures — “Total”,

“Quantity”, and “Discount.“Quantity”, and “Discount.

It has five dimension keys —

“ProductID” that links the fact table “Shipping” with the

“DimProduct” dimension table;

“DateID” that links “Shipping” with the “DimTime”

dimension table;

“ShipperID” that links “Shipping” with the “DimShipper”

dimension table;

and the remaining two dimensions “ToCityID” and

“FromCityID”, link the “Shipping” fact table with the same

dimension table, i.e. “DimCity”.

The two cities, as identified by the respective CityIDs,

would have the same(DimCity) but would mean two

completely different cities when used to signify FromCity

and ToCity. This is a case of role-playing dimension.

Typical Dimension Models

As it has been earlier discusses that the Entity Relationship (ER)

data model is a commonly used data model for relational

databases. Here, the database schema is represented by a set of

entities and the relationship between them. It is an ideal data

model for On-Line Transaction Processing (OLTP).

Let us look at a data model that is considered apt for On-Line Data

Analysis. Multidimensional data modeling is the most popular

data model when it comes to designing a data warehouse.data model when it comes to designing a data warehouse.

Dimensional modeling is generally represented by either of the

following schemas

1. Star Schema

2. Snowflake Schema

3. Fact Constellation Schema

Typical Dimension Models – Star Schema

• It is the simplest of data warehousing schema.

• It consists of a large central table (called the fact table) with no redundancy.

• The central table is being referred by a number of dimension tables. The schema

graph looks like a starburst (see figure below).

• The dimension tables form a radial pattern around the large central fact table.

• The star schema is always very effective for handling queries.

• In the star schema, the fact table is usually in 3NF or higher form of normalization.

• All the dimension tables are usually in a denormalized manner, and the highest form

of normalization they are usually present in is 2NF.

• The dimension tables are also known as look up or reference tables.• The dimension tables are also known as look up or reference tables.

Example - Star Schema for sales of “ElectronicsForAll”

The basic star schema contains four components.

These are:

Fact table, Dimension tables, Attributes and Dimension hierarchies

Snow Flake Schema

• The Snowflake schema is a variant of the Star schema.

• Here, the centralized fact table is connected to multiple dimensions.

• In the Snowflake schema, dimensions are present in a normalized form in

multiple related tables (Figure below).

• A snowflake structure materializes when the dimensions of a star schema

are detailed and highly structured, having several levels of relationship, and

the child tables have multiple parent tables.

• This “snowflaking” effect affects only the dimension tables and does not• This “snowflaking” effect affects only the dimension tables and does not

affect the fact table.

Snow Flake Schema

• Normalization and expansion of the dimension tables in a star schema result

in the implementation of a snowflake design.

• A dimension table is said to be snow flaked when the low-cardinality

attributes in the dimension have been removed to separate normalized

tables and these normalized tables are then joined back into the original

dimension table.

Snow Flake Schema

As we have in the example of “ElectronicsForAll”, the main difference between the Star and Snow-

flake schema is that the dimension tables of the Snowflake schema are maintained in normalized

form to reduce redundancy. The advantage here is that such tables (normalized) are easy to save

storage space. However, it also means that more joins will be needed to execute a query. This will

adversely impact system performance.

Identifying Dimensions to be Snowflaked

In this section, we will observe the practical implementation of the dimensional design.

What is snowflaking?

The snowflake design is the result of further expansion and normalization of the dimension table. In

other words, a dimension table is said to be snowflaked if the low-cardinality attributes of theother words, a dimension table is said to be snowflaked if the low-cardinality attributes of the

dimensions have been divided into separate normalized tables. These tables are then joined to

dimension table with referential constraints (foreign key constraints).

Generally, snowflaking is not recommended in the dimension table, as it hampers the

understandability and performance of the dimensional model as more tables would be required to

satisfy the queries.

When do we snowflake?

The dimensional model is snowflaked under the following two conditions:

The dimension table consists of two or more sets of attributes which define information at different

grains.The sets of attributes of the same dimension table are being populated by different source

systems.

Snow Flake Schema
For understanding why and when we snowflake, consider the “Product” dimension tabl¢ shown in

Conversion to Snowflaked Schema

Snow Flaking Example

• Consider the Normalized form of Region dimension

Region

RegionID

Country Code

State Code
Country

State Code

City Code

Country Code

Country Name

State Code

City Code State

State code

State Name

City Code
City

City Code

City Name

ZIP

Decreases performance because more tables will need to be joined to satisfy queries

Why not to Snowflake?

Normally, you should avoid snowflaking or normalization of a dimension table,

unless required and appropriate. Snowflaking reduces space consumed by

dimension tables, but compared with entire data warehouse the saving is usually

insignificant.

Do not snowflake hierarchies of one dimension table into separate tables.

Hierarchies should belong to the dimension table only and should never be

snowflaked. Multiple hierarchies can belong to the same dimension if the

dimension has been designed at the lowest possible detail.dimension has been designed at the lowest possible detail.

Data Model for Fact Constellation Schemaof TenToTen Stores

The constellation schema is shaped like a constellation of stars (i.e. Star schemas). This is more

complex than Star or Snowflake schema variations, as it contains multiple fact tables. This allows

the dimension tables to be shared among the various fact tables. It is also called “Galaxy schema”.

The main disadvantage of the fact constellation is more complicated design because multiple

aggregations must be taken into consideration (Figure below).

Dimensional Modeling Life Cycle

Phases of Dimensional Modeling Life Cycle:

1. Requirements gathering

2. Identifying the grain

3. Identifying the dimensions

4. Identifying the facts

5. Designing the dimensional model

Understanding Dimension – Cube

• An extension to the two-dimensional Table.

• For example in the previous scenario CEO wants a report on revenue

generated by different services across regions during each quarter

Understanding Dimension – Cube (contd.)

Dimension Hierarchy

Grain

Fact

Testing

Consulting
N .America

Consulting

Production SupportEurope

Asia Pacific

Q1 Q2 Q3 Q4

Recap (contd.)

• Difference between OLTP and OLAP

Comparison of OLTP and DSS

OLTP Capability Examples DSS Capability Examples

• Search & locate student(s)

• Print student scores

• Filter students above 90%

marks

• Update student Grade

• Which courses have productivity

impact on-the-job?

• Which colleges need to be

rewarded for supplying students

with consistent high on-the-job• Update student Grade

• Group by Batch and

compute average score

• Find top 10 high

performance students

with consistent high on-the-job

performance?

• What is the customer satisfaction

improvement due to extended

training?

• How project level profitability is

influenced by certification?

• How much training is needed on

future technologies for non-linear

growth in BI?

Still a little fuzzy about what OLAP can do?

Introduction to On-line Analytical Processing (OLAP)

Scenario:

Internal systems department at Infosys maintains all relevant data in a database.

Conceptual schema is as shown below.

OLAP Contd.

• CEO of the company wants the following information from the IS

department.

• Number of employees added in the role of the company during the last

quarter/6 months/1 year

Q1. How many table(s) is/are required ?Q1. How many table(s) is/are required ?

Q2. How many employees are currently in the projects ?

Q3. How many are on bench?

OLAP Contd.

Q4. Which customer from a region has given maximum business during the

previous quarter on a domain under specific technology and who are the PMs

of the project and assets owned by them.

OLAP Contd.

SOLUTION?

So if there were very few updates and more of data-retrieval queries

being made on your database, what do you think would be a better

schema to adopt?

OLTP or OLAP

Answer a Quick Question

Introduction to Dimensional Modeling (DM)

• DM is a logical design technique used in Data Warehouses (DW). It is

quite directly related to OLAP systems

• DM is a design technique for databases intended to support end-user queries

in a DW

• It is oriented around understandability, as opposed to database• It is oriented around understandability, as opposed to database

administration

However, before we actually jump into MDDM…

let’s first understand the language of

Dimensional ModelingDimensional Modeling

MDDM Terminology

• Grain

• Fact

• Dimension

• Cube

• Star

• Snowflake

Of hierarchies and levels…

What Is a Grain?

• Identifying the grain also means deciding the level of detail that will be

made available in the dimensional model

• Granularity is defined as the detailed level of information stored in a table

• The more the detail, the lower is the level of granularity

• The lesser the detail, higher is the level of granularity

What can be measured, can be controlled…

…and do you know how such measurements are stored in a data

warehouse?

Facts and Fact Tables

• Consists of at least two or more foreign keys

• Generally has huge numbers of records

• Useful facts tend to be numeric and additive

Fact Types

Additive

Facts

Non
Additive

Semi
Additive

Factless Fact

And what about descriptive data?

Can a data warehouse schema take different forms with respect to

normalization?

Answer a Quick Question

Star Schema

The basic star schema contains four components.

These are:

Fact table, Dimension tables, Attributes and Dimension hierarchies

Snow Flake Schema

• Normalization and expansion of the dimension tables in a star schema result

in the implementation of a snowflake design.

• A dimension table is said to be snow flaked when the low-cardinality

attributes in the dimension have been removed to separate normalized

tables and these normalized tables are then joined back into the original

dimension table.

Snow Flaking Example

• Consider the Normalized form of Region dimension

Region

RegionID

Country Code

State Code
Country

State Code

City Code

Country Code

Country Name

State Code

City Code State

State code

State Name

City Code
City

City Code

City Name

ZIP

Decreases performance because more tables will need to be joined to satisfy queries

Armed with these weapons that we call ‘Concepts’, let’s

step into the battlefield!

Case Study

Conversion of a ER Model to a Dimensional Model

ORDER

order_num (PK)

customer_ID (FK)

STORE

store_ID (PK)

PRODUCT

SKU (PK)

Description

category

brand

CUSTOMER

customer_ID (PK)

customer_name

credit_profile

purchase_profile

address
ORDER-LINE

order_num (PK) (FK)

SKU (PK) (FK)

ER Diagram

customer_ID (FK)

store_ID (FK)

clerk_ID (FK)

date

store_ID (PK)

store_name

floor_type

address

district

CLERK

clerk_id (PK)

clerk_name

clerk_grade

PROMOTION

promotion_NUM (PK)

promotion_name

ad_type

price_type

SKU (PK) (FK)

promotion_key (FK)

dollars_cost

dollars_sold

units_sold

TIME

time_key (PK)

SQL_date

day_of_week

month

STORE

store_key (PK)

store_ID

PRODUCT

product_key (PK)

SKU

category

description

brand

CUSTOMER

customer_key (PK)

customer_name

FACT

time_key (FK)

customer_key (FK)

store_key (FK)

clerk_key (FK)

product_key (FK)

DIMENSONAL

MODEL

store_ID

store_name

floor_type

address

district

CLERK

clerk_key (PK)

clerk_id

clerk_name

clerk_grade

customer_name

credit_profile

purchase_profile

address

PROMOTION

promotion_key (PK)

promotion_name

ad_type

price_type

product_key (FK)

promotion_key

(FK)

dollars_cost

dollars_sold

units_sold

Summary

• Basics of Database

• OLTP

• MDDM

• Cube

• Star Schema

• Snowflake schema

Food for Thought!

1. Who according to you would be the user of OLAP?

2. Who would need the Multidimensional perspective of data?

